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We characterize the higher orders of smoothness of functions in C[O, 1] by
Bernstein polynomials and Kantorovich operators. This task is carried out by
means of the rate of convergence for combinations of these operators and the
behavior of their derivatives. ,I', 1995 Academic Press. Inc.

I. INTRODUCTION

The Bernstein polynomials on C[ 0, I] are given by

(l.l )

It was shown by H. Berens and G. G. Lorentz [3] in 1972 that if 0 < ex < 2
then

IBn(f, x) - j(x)j ~ M(x( I -x)/n)'-/2

if and only if

IILlUII C[h. I -h] == II/(x + h) - 2/(x) + /(x -h)11 C[II. 1-11] = O(h~),

Many expressions concerning the connection between the rate of con
vergence for Bernstein polynomials and the smoothness of functions were
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explored since then. In fact, for 0 ~,., < 2, 0 < <X < 2, cp(x) = x( 1 - x), we
have

II (cp(x)) -'1/2 (BnU, x) - f(x)) II c[o, 1] = O(n -"'/2)

~ II(cp(x))("'-'I)/2 AJ,f(x)11 C[h. I-h] = O(h"').
(1.2 )

As mentioned above, the case 0 < <X = ,., < 2 was proved by H. Berens and
G. G. Lorentz and reproved in 1978 by M. Becker [1]. Most parts of the
proof of (1.2) are due to Z. Ditzian. In 1979, he proved the case,., = 0 in
[5J which was reproved in 1984 by V. Totik in [16]. Ditzian also showed
the case 0 < ,., ~ <X < 2 in 1980 in [6J. Then, in 1987 he proved the case
o< <X < ,., < 2, <X + ,., ~ 2 in [8] and meanwhile posed a conjecture for the
final case 0 < <X < tl < 2, tx. + tl > 2. Finally, in 1992 the author proved this
final case of (1.2) in [18 J by confirming the conjecture of Z. Ditzian.

In all the statements of (1.2), two cases are of most importance. The first
one is tl = O. The task of such a result is to characterize the classes of func
tions which have some given orders of approximation for a sequence of
approximating operators. For the Bernstein type operators, this task is
often implemented by means of the so-called Ditzian-Totik moduli of
smoothness (see [5,9,10,16, 17J). These new moduli of smoothness can
also be used for the characterization of orders of approximation by
algebraic polynomials, see [10]. For a recent contribution along this line,
see the monograph of Z. Ditzian and V. Totik [10].

The second important case of (1.2) is ,., = tx.. The aim of such a result is
to characterize the smoothness of functions such as Lipschitz smoothness
by means of the rate of convergence for some classes of approximating
operators. In [1, 2, 3] it was shown that the Lipschitz functions of one and
second orders can be characterized by means of Bernstein type operators
which reproduce linear functions. Then, it is natural to investigate whether
such a characterization can be extended to higher orders of smoothness
and also to the Bernstein type operators which do not reproduce linear
functions such as Kantorovich operators. The first purpose of this paper is
to give such a characterization.

Since the Bernstein polynomials cannot be used for the investigation of
higher orders of smoothness, P. L. Butzer [4 J introduced the combinations
of Bernstein polynomials which have higher orders of approximation.
Z. Ditzian and V. Totik [10, p. 116] (see also [5, p. 278J) extended this
method of combinations and defined for the operators {LAf, x)} nE N the
combination Ln(f, r, x) as

r- I

Ln(f, r, x) = L Ci(n) Ln,(f, x),
;=0

( 1.3)
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where with an absolute constant CEN, n; and c;(n) satisfy

(a) n=no < ... <nr_1:::;;Cn;

r -1

(b) L: Ic;(n)l:::;; C;
,=0
r - 1
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(1.4)

(c) L: c;(n) = I;
;~o

r -1

(d) L: c;(n) n;-k = 0,
;=0

for k = I, ... , r - I.

By means of these combinations we can extend the Berens-Lorentz
Theorem to higher orders of smoothness. In fact, we show in this paper
that for O<ex<r,jEC[O, I]

wr(f, t) = O(t~)

~ IBnU; r - I, x) - f(x)1 :::;; M(x( 1- x)/n + n -2)"'/2,

~ jKn(f, r, x) - f(x)/ :::;; M'(x( 1- x)/n + n -2)"'/2,

Here Kn(f, x) is the Kantorovich operator given by

n f(k+ 1)/(n+ 1)

Kn(f,X)= L: (n+l) f(t)dtPn.k(x)
k~O k/(n+ I)

r~ 2 (1.5)

r~ 1. (1.6)

(1.7 )

and wr(f, t) is the rth classical modulus of smoothness defined as

(JJr(f, t) = sup 1IL1~f(x)lIC[rhI2.1-rhI2]'
O<h!f;,t

L1~f(x)= kto (-I y-k G) f(x + (k - r/2) h).

(1.8 )

We note that the case r = 2 in (1.5) is just the Berens-Lorentz Theorem
in [3].

The second purpose of this paper is to consider the close connection
between the derivatives of the Bernstein type operators and the smoothness
of functions which has been investigated by Z. Ditzian, V. Totik,
K. G. Ivanov and some other mathematicians (see [7, p.25], [9, p.87]
and [10, Chapter 7]). We extend a result of Ditzian [7] to higher orders
of smoothness and will show for 0 < ex < r that
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under the assumption that W r (f, t) = O(tp) with certain fJ> °and

wr(f, t) = O(ttx)~ IK;;l(f, x)1 ~ M' (min {n 2, x(1 ':..- X)}) Ir-
tx

1/2. (1.10)

Let us mention that all the results here are also valid for the Bernstein
Durrmeyer operators given in [9, II].

2. DIRECT THEOREMS

The direct part of ( 1.5) and (1.6) is the following

THEOREM 2.1. Let f E C[ 0, I]. Then we have for r ~ 2

IBn(f, r - 1, x) - f(x)1 ~ Mwr(f, jx( I -x)jn + n -2) (2.1)

and for r ~ 1

IK,.(f, r, x) - f(x)l ~ M'wr(f, Jx(l - x)jn + n -2), (2.2)

where M and M' are constants independent of nand x.
We recall that Kr(f, tr), the Peetre K-functional given by

Kr(f,t r)= inf {llf-gllx+trllg(r)lloc} (2.3)
gir-l)EA.C.{Ot·

is equivalent to W r (f, f), see [10, p. 11]. That is,

M;; lWr(f, t) ~ Kr(f, tr)~ MOwr(f, t) (2.4 )

with a constant M 0 independent of 1~ t> °and f E C[ 0, 1].
Using the expressions of the moments of the Bernstein polynomials and

Kantorovich operators given in [10, p. 134] we have for k = I, ..., r - I

Bn((. - x)k, r -I, x) =0,

K n ((· _X)k, r, x) = °
and for rEN

B)(· - x)2r, x) ~ M1(x( 1- x)jn + n -2)',

K,,((· _X)2r, x) ~ M1(x( l-x)jn +n- 2r. (2.5 )

Then we can prove Theorem 2.1 by the standard method for direct
theorems (see [3, p.699], [5, p.284] and [10, Theorem 9.3.2]). We omit
the detailed proof here.
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The direct part of ( 1.9) and (l.l 0) is the following
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THEOREM 2.2. Let fEC[O, 1], rEN, LnU,x) given by (1.1) or (1.7).
Then we have

.....·here M is a constant independent of nand x.

Proof of Theorem 2.2. From the expressions of the derivatives of
LnU,x) given by [10, (9.4.3) and (9.4.8)] we know that

Iltpr/2L~)U)II",:S:M 2 nr/2 Ilfll"" if fEC[O,I]; (2.7)

IIL~)U)II",:S: M 2 nr 11ft,), if fEC[O,I]; (2.8)

IIL~IU)II", :s: M 2Ilf(r)11 x' if pr-l) A C (2.9)E . . Joe'

where M 2 is a constant independent of nand f Thus, by taking infimum
over g we have

IL~;)(f, xli :s: inf{ IL~)U - g, x)1 + IL~;\ g, x)l: glr- I) EA. C. lo,.}

:s: inf {min {M2 CO~X)f2 Ilf - gil"" M2 n
r Ilf - gil oc}

+ M 2 IIg1r111 x: g(r-l)E A. c. l",}

By (2.4), we know that (2.6) holds with a constant M independent of 11 and x.
The proof of Theorem 2.2 is complete.

Thus, we have proved the direct estimates stated in section 1. In the
following two sections we shall show the corresponding inverse results
respectively.

3. INVERSE RESULTS FOR RATE OF CONVERGENCE

In this section we give the inverse part of (1.5) and (1.6). We use the
elementary method for inverse problems developed by M. Becker [1],
H. Berens and G. G. Lorentz [3], Z. Ditzian and V. Totik [10, Chapter 9].
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THEOREM 3.1. Let f E qo, 1], r E N, 0 < oc < r. Then we have

wr(f, h) = O(h 1
)

(
X(l - x) 1 )1/2

-= IB,,(j;r - 1, x) - f(x)1 ~ M n + n2 '

I (x(l-X) 1 ),,/2-= IKll(f, r, x) - f(x)1 ~ M n +n2 '

if r?2

if r? 1.

(3.1 )

(3.2)

Remark. The term x(l - x )/n + n -2 can not be replaced by x(l - x )/n
for r? 3 in (3.1) and for r? 1 in (3.2). Also, for r > 2, r can not be replaced
by 2r in (3.1). The exact calculations in [5, p. 279] and [10, p. 2] show
that this can not be improved much. Combining with the Berens-Lorentz
Theorem in [3] we can see the similarity between the Bernstein polyno
mials and the best polynomials of approximation. In fact, we know from
[10,14,15] that for fEq-l, 1], rEN, O<oc<r, wr(f,h)=O(h") is
equivalent to the existence of a sequence of polynomials {P,,} of degree n
that satisfies

If(x) - P,,(x)\ ~ M(JI=7/n + n- 2t.

Moreover, the term ,)'1 - x 2/n + n -2 can be replaced by JI=7/n if and
only if r = I, 2.

Proof of Theorem 3.1. We only prove the inverse part of (3.1) here
since the proof of (3.2) is the same.

We denote

{
I {JqJ(x+(r/2-k) t)}}d(n, x, t) = max -, max .
n O";;k",,, n

Let 0< t ~ h < 1/(8r), x ± rt/2 E(0, I), n EN. We have

f

tl2
ft/2 I ( r)1+ ... B~) f, r-I, x+ L Yj dYI .. ·dYr

-t12 -1/2 j~l

~4rM(d(n,x, t))'"
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Here, by (2.4), Id is chosen over d> °such that
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II/~)II oc· :>;. 2d -,Kr(f, d') :>;. 2Mo d -'w,(f, d), (3.3)

III - Idll 00:>;' 2K,(f, d r):>;. 2Mow,(f, d). (3.4)

We need to estimate J 1 and J 2 •

By (2.9) and (3.3) we have

I
t /2 t/2 r - 2

J):>;' ... I L 1c;(n)IIIB~)(fd)11 oc dY1 .. , dy,
-t/2 -t/2 ;=0

:>;. CM2 II/~)II 00 t':>;' 2CM2 M o d-'t'w,(f, d). (3.5)

By (2.8) and (3.4) we have

t/2 t/2' - 2

J 2 :>;. I ... J L 1c;(n)1 M 2 n; [II - Idll oc dYl ... dy,
-t/2 -t/2 ;=0

:>;. c+ IM2 n't' III - idIl 00:>;' 2C+ 1M2 Mon't'wr(f, d). (3.6)

By (2.7) and (3.4) we also have

Here we have used inequality (3.8) which we shall give and prove in the
following Lemma 3.2.

Thus, by taking infimum over (3.6) and (3.7), we have

1L1;/(x)! :>;. 4'M(d(n, x, t))OC + 2CM2 Mo d -'t'wr(f, d)

+ 2MoM 2 ( C+ 1+ C, C/2 +I) t'(d(n, x, t))-r w,(f, d).

Let d= den, x, t). We have

1L1;/(x)! :>;. M 3{ (d(n, x, t)r + (t/d(n, x, t)Y w,(f, den, x, t))}

with a constant M 3 independent of n, x, t and h.
The sequence den, x, t) decreases to zero as n tends to infinity, also

d(n+l,x,t):>;.d(n,x,t):>;.2d(n+l,x,t). Hence, for any JE(0,1/(8r)),
there is an n E N such that d(n, x, t) :>;. J < 2d(n, x, t). Consequently
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which implies OJ r (j, h) = O(h") by [3, p. 696] and [10, Lemma 9.3.4]. Our
proof of Theorem 3.1 is then complete after we prove the following
Lemma 3.2.

LEMMA 3.2. Let r E N, 0 < t < 1/8r, x ± rt/2 E (0, 1). Then there holds

t/2 t/2 (( r )) -r/2J ... J <P x + L: Yj dy, ... dYr
- t/2 -t/2 j= 1

where Cr is a constant independent of x and t.

Proof of Lemma 3.2. The case r = 2 was proved in [1].
Note that <p(z) = <p(1 - z) for z E [0, 1]. We can assume that x ~~.

If ! ~ x ~ ((r+ 1)/2) t. Then for z E [ -rt/2, rt/2]

7 x
<p( x + z) ~ l6 r + 1.

Hence

t/2 t/2 (( r )) -r/2f ... f <p x + L: Yj dy I ... dy r

-t/2 -t/2 j= 1

(
7 x )-r/2 (16(r+l))r/2

~ _ __ t r = trx- r/2
16 r + 1 7

(
16(r+ 1))rI2 r (1 {(r) })-r

I
2

~ t - max x + - - k t
7 20<;;k<;;r 2

Therefore, in the case ! ~ x ~ ((r + 1)/2) t, (3.8) holds if we take Cr =
(5(r+l))'/2.

The proof of the case rt/2 < x < (r + 1) t/2 is somewhat different.



BERNSTEIN POLYNOMIALS AND SMOOTHNESS 311

We first prove for r = 2m with mEN. In this case, by (3.8) with r = 2, we
have

r:/2··· (:/2 (cp (x +it Yi)) -,/2 dYI ... dy,

:( ft/2 .. , f
tI2

.. (x + i Yi) -,/2 (~)'i2 dYI ... dy,
-t/2 -1/2 i~ \ 7

(
16)'/2 f'/2 f 'i 2 m:( - .. , n (x+ Y2,-1 + Y2,)-1 dYI .. ·dy,
7 -1/2 -t/2i~[

(16)':( 7 C;'t'(x+t)-m

:( (~)' C';t'2m(max {x + (~_ k) t})-m
7 O~k~, 2

which implies (3.8).
Finally, we prove (3.8) for rt/2<x«(r+I)/2)t and r=2m-1 with

mEN. By (3.8) with r = 2 we have

(
16)'/2

f
'/
2 f'/2 (",-1)-1

:( 7 -1/2'" -t12 iDI (x + Y2i-1 + Y2;)

x(x+ y,)-1/2dYI· .. dy,

(
16)'/2 (m-I {'/2 1/2 })

:( -7 n f f (CP(X+Y2i-I+Y2,))-ldY2i- 1dY2i
i~ 1 -1/2 -1/2

112 1
x f dv

-//2 jx + y, .,
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Hence (3.8) also holds for the final case and the proof of Lemma 3.2 is
complete.

The example f(x) = x 3 with IBnU, x) - f(x)1 ~ Ix( 1 - x)( 1 - 2x) n -21
shows that the number r - 1 of times of the combinations in (3.1) can not
be reduced to r - 2. The following theorem shows that the number r in
(3.2) is also necessary.

THEOREM 3.3. For any 1 <IX<2 there exist no functions {hn.ot(x)}nEN
such that for f E C[ 0, 1J

IKn(f, x) - f(x)1 ~ Mh n."Jx) ¢'>w2(f, t) = D(t"). (3.9)

Proof of Theorem 3.3. Suppose that for some 1 < IX < 2 there exist func
tions {hn.ot(x)} nE N that satisfy (3.9). Let f(x) = xi, i = 1, 2. Then from the
moments of the Kantorovich operators given in [10, Chapter 9J we have
for n E N, x E [0, 1J

and

Hence,

with a constant m > °independent of n E N and x E [0, 1J.
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Now let g(x) = x fl with 1 < P< oc. We know from the saturation condition
of the Kantorovich operators [12, 13] that

However, W2(g, t) # (1"), which is a contradiction. Hence Theorem 3.3 holds.

4. INVERSE RESULTS FOR DERIVATIVES

In this section we give the inverse part of (1.9) and (1.10). Some ideas
of the proof are from [7,10]. We use the combinations of operators to
deal with higher levels of smoothness.

THEOREM 4.1. Suppose that f E qo, 1] satisfies wr(f, h) = O(h lJ ) for
certain f3 > 0, r EN, 0 < oc < r. Then we have

Remark. The case r = 1, 2 were proved by Ditzian in [7, Theorem 2.1].

Proof of Theorem 4.1. By Theorem 2.2 we only need to prove the
inverse part. Suppose that wr(f, h) ::::; Lh lJ and

IB~)(f, x)/::::; L (min {n2,x(1 ~xJr-"1/2.
Let hE(O, 1/(8r», O<t::::;h, x±rt/2E(O, I), nEN. Then by (2.1) we have

J
1

/

2
J'/2 I ( r)1+ ... B~) f, r - 1, x + L Yj dYl'" dYr

-1/2 -1/2 j~ I

J
'/2 J'/2::::;4 rMwr(f,d(n,x,t))+ ... C+1L
-1/2 -1/2

( {
n })(r-IX)/2

X min n 2
, r dYl ... d.Vr

cp(x + L.j~ I Y)

::::; 4rMw r (f, d(n, x, t) + C+ IL min

{ ( {
)cp(x+(r/2-k)t)}),,-r}x nr-"tr,(Cr+l) max tr

O<;k<;r n

::::;4rMw r(f, d(n, x, t)) + C+1L(Cr + 1) tr(d(n, x, tj)"-r.

Here we have used Lemma 3.2 and Holder's inequality.
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Now for any 15 E (0, 1/(8r)), we choose n E N such that d(n, x, f) ~ 15 <
d(n - 1, x, f) ~ 2d(n, x, f).

With this choice, we have

IA~f(x)1 ~ M'l Wy(f, 15) + M~ fY15 ~ - Y

with the constants M'l, M~ independent of x, f, hand 15. Hence

Let A = (2M', + 1)1/~+'111, 15 = h/A. By induction we have for kEN

k-I

~ M;kWy(f, hA -k) + L M~AY·-~(M', A -~)' h~

;=0

Thus, letting k --> if) we obtain

The proof of Theorem 4.1 is complete.

Remark. We conjecture that the assumption wy(f, h) = O(h p) in
Theorem 4.1 can be dropped.

For the Kantorovich operators, our result on derivatives is simpler.

THEOREM 4.2. Lef f E C[ 0, 1], r EN, 0 < IX < r. Then we have

(4.2)

The proof of Theorem 4.2 follows using Theorem 4.1 and the method in
[7, p. 30]. We omit it here.

ACKNOWLEDGMENTS

The author thanks Professor Z. R. Guo for his kind encouragement. Thanks are also due
to Professor H. Berens, Professor Z. Ditzian, and the referees for their careful comments and
suggestions.

REFERENCES

I. M. BECKER, An elementary proof of the inverse theorem for Bernstein polynomials,
Aequationes Math. 19 (1979),145-150.



BERNSTEIN POLYNOMIALS AND SMOOTHNESS 315

2. M. BECKER AND R. J. NESSEL, A global approximation theorem for Meyer-Konig and
Zeller operators, Math. Z. 160 (\978), 195-206.

3. H. BERENS AND G. G. LORENTZ, Inverse theorems for Bernstein polynomials, Indiana
Univ. Math. J. 21 (1972),693-708.

4. P. L. BUTZER, Linear combinations of Bernstein polynomials, Canad. Math. J. 5 (1953),
559-567.

5. Z. DITZIAN, A global inverse theorem for combinations of Bernstein polynomials,
J. Approx. Theory 26 (1979), 277-292.

6. Z. DITZIAN, Interpolation theorems and rate of convergence of Bernstein polynomials, in
"Approximation Theory, III" (E. W. Cheney, Ed.), Academic Press, pp. 341-347, 1980.

7. Z. DITZIAN, Derivatives of Bernstein polynomials and smoothness, Proc. Amer. Math. Soc.
93 (1985),25-31.

8. Z. DITZIAN, Rate of convergence for Bernstein polynomials revisited, J. Approx. Theory 50
( 1987), 40-48.

9. Z. DITZIAN AND K. G. IVANOV, Bernstein-type operators and their derivatives, J. Approx.
Theory 56 (1989), 72-90.

10. Z. DITZIAN AND V. TOTIK, "Moduli of Smoothness," Springer Series in Computational
Mathematics, Vol. 9, Springer-Verlag, Berlin/Heidelberg/New York, 1987.

II. M. HEILMANN, Lp-saturation of some modified Bernstein operators, J. Approx. Theory 54
(1988), 260-28 I.

12. V. MAIER, Lp -approximation by Kantorovich operators, Anal. Malh. 4 ( 1978), 289-295.
13. S. D. RIEMENSCHNEIDER, The Lp-saturation of Kantorovich-Bernstein polynomials,

J. Approx. Theory 23 (1978), 158-162.
14. Y. SUN, "Approximation Theory of Functions," Beijing Normal Univ. Press, Beijing,

1989.
15. A. F. TIMAN, "Theory of Approximation of Functions of a Real Variable," Macmillan,

New York, 1963. [English transl.]
16. V. TOTlK, An interpolation theorem and its applications to positive operators, Pacific

J. Math. 111 (J984), 447-481.
17. V. TOTIK, Approximation by Meyer-Konig and Zeller type operators, Math. Z. 182

(1983),425-446.
18. DING-XUAN ZHOU, On a conjecture of Z. Ditzian, J. Approx. Theory 69 (\992), 167-172.


